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Abstract 

 Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA) are both variable 

reduction techniques. There are distinct differences between PCA and EFA.  Similarities and 

differences between PCA and EFA are studied in this paper. Principal Components retained 

account for a maximal amount of variance of observed variables while Factors account for 

common variance in the data.  PCA decomposes correlation matrix while EFA decomposes 

adjusted correlation matrix. Exploring basic theory of multivariate analysis, which involves a 

mathematical procedure to transform a number of correlated variables into a number of 

uncorrelated variables have been studied, compared and analyzed for better performance. 

 

Keywords: Principal Component Analysis, Exploratory Factor Analysis, Principal Components, 

                 Correlated variables, uncorrelated variables, eigenvalues, eigenvectors. 

 

 

  

                                                           

 M.E. (C.S.E.) First Year, Sipna College of Engineering & Technology, Amravati 


 Professor, Computer Science & Engineering Department, Sipna College of Engineering &  

Technology, Amravati 



             IJMIE           Volume 3, Issue 6             ISSN: 2249-0558 
__________________________________________________________     

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Management, IT and Engineering 
http://www.ijmra.us 

 
416 

June 
2013 

1. Introduction 

Principal component analysis (PCA) is a mathematical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of 

values of linearly uncorrelated variables called principal components. The number of principal 

components is less than or equal to the number of original variables. This transformation is 

defined in such a way that the first principal component has the largest possible variance and 

each succeeding component in turn has the highest variance possible under the constraint that it 

be orthogonal to the preceding components. Principal components are guaranteed to be 

independent only if the data set is jointly normally distributed. PCA is sensitive to the relative 

scaling of the original variables while Factor analysis is a statistical method used to 

describe variability among observed correlated variables in terms of a potentially lower number 

of unobserved variables called factors. In other words, it is possible, for example, that variations 

in three or four observed variables mainly reflect the variations in fewer unobserved variables. 

Factor analysis searches for such joint variations in response to unobserved latent variables. The 

observed variables are modeled as linear combinations of the potential factors, plus "error" 

terms. The information gained about the interdependencies between observed variables can be 

used later to reduce the set of variables in a dataset. Computationally this technique is equivalent 

to low rank approximation of the matrix of observed variables. Factor analysis is related 

to principal component analysis (PCA), but the two are not identical. Latent variable models, 

including factor analysis, use regression modeling techniques to test hypotheses producing error 

terms, while PCA is a descriptive statistical technique. 

 

2. Definitions 

2.1 Principal Component Analysis (PCA) 

PCA is a variable reduction technique. It is used when variables are highly correlated. It reduces 

the number of observed variables to a smaller number of principal components which account for 

most of the variance of the observed variables. It is a large sample procedure. The total amount 

of variance in PCA is equal to the number of observed variables being analyzed. In PCA, 

observed variables are standardized, e.g., mean=0, standard deviation=1, diagonals of the matrix 

are equal to 1. The amount of variance explained is equal to the trace of the matrix (sum of the 

diagonals of the decomposed correlation matrix).The number of components extracted is equal to 
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the number of observed variables in the analysis. The first principal component identified 

accounts for most of the variance in the data. The second component identified accounts for the 

second largest amount of variance in the data and is uncorrelated with the first principal 

component and so on. Components accounting for maximal variance are retained while other 

components accounting for a trivial amount of variance are not retained. Eigen values indicate 

the amount of variance explained by each component. Eigen vectors are the weights used to 

calculate components scores. 

 

2.2 Exploratory Factor Analysis (EFA) 

EFA is a variable reduction technique which identifies the number of latent constructs and the 

underlying factor structure of a set of variables. It hypothesizes an underlying construct, a 

variable not measured directly. It estimates factors which influence responses on observed 

variables. It allows to describe and identify the number of latent constructs .It includes unique 

factors, error due to unreliability in measurement. It traditionally has been used to explore the 

possible underlying factor structure of a set of measured variables without imposing any 

preconceived structure on the outcome. 

 

 

3. The PCA and EFA models 

 3.1 PCA MODEL 

PCA is mathematically defined as an orthogonal linear transformation that transforms the data to 

a new coordinate system such that the greatest variance by any projection of the data comes to lie 

on the first coordinate (called the first principal component), the second greatest variance on the 

second coordinate, and so on. A data matrix is defined, X
T
, with zero empirical mean where each 

of the n rows represents a different repetition of the experiment, and each of the m columns gives 

a particular kind of datum. The  singular  value decomposition  of  X  is X = WΣV
T
, where 

the m × m matrix W is the matrix of eigenvectors of the covariance matrix XX
T
, the matrix Σ is 

an m × n rectangular diagonal matrix with nonnegative real numbers on the diagonal, and 

the n × n matrix V is the matrix of eigenvectors of X
T
X. The PCA transformation that preserves 

dimensionality is then given by: 
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V is not uniquely defined in the usual case when m < n − 1, but Y will usually still be uniquely 

defined. Since W is an orthogonal matrix, each row of Y
T
 is simply a linear transformation of the 

corresponding row of X
T
. The first column of Y

T
 is made up of the "scores" of the cases with 

respect to the "principal" component; the next column has the scores with respect to the "second 

principal" component, and so on. If we want a reduced-dimensionality representation, we can 

project X down into the reduced space defined by only the first L singular vectors, WL: 

 

 where  with  the  rectangular identity matrix. 

The matrix W of singular vectors of X is equivalently the matrix W of eigenvectors of the matrix 

of observed co variances C = X X
T
, 

 

Given a set of points in Euclidean space, the first principal component corresponds to a line that 

passes through the multidimensional mean and minimizes the sum of squares of the distances of 

the points from the line. The second principal component corresponds to the same concept after 

all correlation with the first principal component has been subtracted from the points. The 

singular values (in Σ) are the square roots of the eigenvalues of the matrix XX
T
.  Each 

eigenvalue is proportional to the portion of the "variance" that is correlated with each 

eigenvector. The sum of all the eigenvalues is equal to the sum of the squared distances of the 

points from their multidimensional mean. PCA essentially rotates the set of points around their 

mean in order to align with the principal components. This moves as much of the variance as 

possible using an orthogonal transformation into the first few dimensions.PCA is often used in 

this manner for dimensionality reduction. PCA is sensitive to the scaling of the variables. If we 

have just two variables and they have the same sample variance and are positively correlated, 

then the PCA will entail a rotation by 45° and the "loadings" for the two variables with respect to 

the principal component will be equal. But if we multiply all values of the first variable by 100, 

then the principal component will be almost the same as that variable, with a small contribution 
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from the other variable, whereas the second component will be almost aligned with the second 

original variable. 

 

 

3.2 The EFA model 

In multivariate statistics, exploratory factor analysis (EFA) is a statistical method used to 

uncover the underlying structure of a relatively large set of variables. EFA is a technique 

within factor analysis whose overarching goal is to identify the underlying relationships between 

measured variables. It is commonly used by researchers when developing a scale which is a 

collection of questions used to measure a particular research topic and serves to identify a set 

of latent constructs underlying a battery of measured variables. It is used when the researcher has 

no a priori hypothesis about factors or patterns of measured variables. Measured variables are 

any one of several attributes of people that may be observed and measured. An example of a 

measured variable is the physical height of a human being. The numbers of measured variables 

to include in the analysis are carefully considered. EFA procedures are more accurate when each 

factor is represented by multiple measured variables in the analysis. EFA is based on 

the common factor model. Within the common factor model, measured variables are expressed 

as a function of common factors, unique factors, and errors of measurement. Common factors 

influence two or more measured variables, while each unique factor influences only one 

measured variable and does not explain correlations among measured variables.  

 

 

4. Difference between Principal Component Analysis and Exploratory Factor 

   Analysis 

Principal Components retained account for a maximal amount of variance of observed variables. 

Exploratory factor analysis account for common variance in the data.PCA decomposes 

correlation matrix while EFA decomposes adjusted correlation matrix. In PCA ones are on the 

diagonals of the correlation matrix while in EFA diagonals of correlation matrix are adjusted 

with unique factors.PCA minimizes sum of squared perpendicular distance to the component 

axis while EFA estimates factors which influence responses on observed variables. In PCA 

component scores are a linear combination of the observed variables weighted by Eigen vectors 
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while in EFA observed variables are linear combinations of the underlying and unique 

factors.PCA decomposes a correlation matrix with ones on the diagonals. The amount of 

variance is equal to the trace of the matrix, the sum of the diagonals, or the number of observed 

variables in the analysis. PCA minimizes the sum of the squared perpendicular distance to the 

component axis. Principal components retained account for a maximal amount of variance. The 

component score is a linear combination of observed variables weighted by eigenvectors. 

Component scores are a transformation of observed variables, 

 (C1 = b11x1 + b12x2 + b13x3 + . . .) 

The PCA Model is Y = XB 

Where Y is a matrix of observed variables 

X is a matrix of scores on components 

B is a matrix of eigenvectors (weights) 

 

EFA decomposes an adjusted correlation matrix. The diagonals have been adjusted for the 

unique factors. The amount of variance explained is equal to the trace of the matrix, the sum of 

the adjusted diagonals or communalities. Factors account for common variance in a data set. 

Squared multiple correlations (SMC) are used as communality estimates on the diagonals. 

Observed variables are a linear combination of the underlying and unique factors. Factors are 

estimated, (X1 = b1F1 + b2F2 + . . . e1 where e1 is a unique factor). 

The EFA Model is Y = Xb+ E 

Where Y is a matrix of measured variables 

X is a matrix of common factors 

b is a matrix of weights (factor loadings) 

E is a matrix of unique factors, error variation 

 

 

5. Principal Component Analysis Methods 

Two types of methods have been used for PCA. Firstly, there are the more conventional matrix 

methods, in which all the data are used to estimate the Variance-covariance structure and express 

it in a matrix. In practice this usually means that the matrix is diagonalized using some numerical 

technique such as singular value decomposition (SVD). The second type is data method since 



             IJMIE           Volume 3, Issue 6             ISSN: 2249-0558 
__________________________________________________________     

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Management, IT and Engineering 
http://www.ijmra.us 

 
421 

June 
2013 

they work directly with the data. This approach is suitable for real-time applications or for very 

high dimensional problems where the computational expense is an important consideration. 

Neural networks with Hebbian learning have been proposed for adaptive PCA. Simple PCA 

which is a faster method that does not require learning parameters has also been developed. In 

matrix method the goal is to find the eigenvectors of the covariance matrix. These eigenvectors 

correspond to the directions of the principal components of the original data; their statistical 

significance is given by their corresponding eigenvalues.  

 

6. Exploratory Factor Analysis Methods 

Exploratory factor analysis (EFA) is generally used to discover the factor structure of a measure 

and to examine its internal reliability.  EFA is often recommended when researchers have no 

hypotheses about the nature of the underlying factor structure of their measure.  Exploratory 

factor analysis has three methods:  (1) decide the number of factors, (2) choosing an extraction 

method, (3) choosing a rotation method.   

 

6.1. DECIDING THE NUMBER OF FACTORS 

The most common approach to deciding the number of factors is to generate a scree plot.  The 

scree plot is a two dimensional graph with factors on the x-axis and eigenvalues on the y-axis.  

Eigenvalues are produced by a process called principal components analysis (PCA) and represent 

the variance accounted for by each underlying factor.  They are not represented by percentages 

but scores that total to the number of items. A 12-item scale will theoretically have 12 possible 

underlying factors; each factor will have an eigenvalue that indicates the amount of variation in 

the items accounted for by each factor.  If a first factor has an eigenvalue of 3.0, it accounts for 

25% of the variance (3/12=.25).  The total of all the eigenvalues will be 12 if there are 12 items, 

so some factors will have smaller eigenvalues. They are typically arranged in a scree plot in 

descending order like the following: 
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From the scree plot you can see that the first couple of factors account for most of the variance, 

then the remaining factors all have small eigenvalues.  The term “scree” is taken from the word 

for the rubble at the bottom of a mountain.  A researcher might examine this plot and decide 

there are 2 underlying factors and the remainder of factors is just “scree” or error variation.  So, 

this approach to selecting the number of factors involves a certain amount of subjective 

judgment. Another approach is called the Kaiser-Guttmann rule and simply states that the 

number of factors is equal to the number of factors with eigenvalues greater than 1.0. We tend to 

recommend the scree plot approach because the Kaiser-Guttmann approach seems to produce 

many factors. 

 

6.2. FACTOR EXTRACTION 

Once the number of factors is decided the researcher runs another factor analysis to get the 

loadings for each of the factors.  To do this, one has to decide which mathematical solution to 

use to find the loadings.  There are about five basic extraction methods (1) PCA, which is the 

default in most packages.  PCA assumes there is no measurement error and is considered not to 

be a true exploratory factor analysis; (2) maximum likelihood (a.k.a. canonical factoring); (3) 

alpha factoring, (4) image factoring, (5) principal axis factoring with iterated communalities 

(a.k.a. least squares).The extraction method will produce factor loadings for every item on every 

extracted factor.    

 

6.3. ROTATION  

Once an initial solution is obtained, the loadings are rotated.  Rotation is a way of maximizing 

high loadings and minimizing low loadings so that the simplest possible structure is achieved.  

There are two basic types of rotation:  orthogonal and oblique.  Orthogonal means the factors are 

Factors

Eigenvalues
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assumed to be uncorrelated with one another.  This is the default setting in all statistical packages 

but is rarely a logical assumption about factors in the social sciences.  Not all researchers using 

EFA realize that orthogonal rotations imply the assumption that they probably would not 

consciously make.  Oblique rotation derives factor loadings based on the assumption that the 

factors are correlated, and this is probably most likely the case for most measures.  So, oblique 

rotation gives the correlation between the factors in addition to the loadings.   

 

7. Conclusion 

Principal Component Analysis and Exploratory Factor Analysis are powerful statistical 

techniques. The techniques have similarities and differences. Principal components analysis is 

used to find optimal ways of combining variables into a small number of subsets, while factor 

analysis is used to identify the structure underlying such variables and to estimate scores to 

measure latent factors themselves. The main applications of these techniques can be found in the 

analysis of multiple indicators, measurement and validation of complex constructs, index and 

scale construction, and data reduction. These approaches are particularly useful in situations 

where the dimensionality of data and its structural composition are not well known. The 

difference between the two approaches is that in PCA, all of the observed variance is analyzed, 

while in exploratory factor analysis it is only the shared variance that is analyzed. Principal 

components are weighted composites of the observed variable, which is why they are properly 

referred to as components not factors. Factor analysis estimates the proportion of common factor 

variance and attempts to factor this common variance, ignoring the specific and error variance. 

Principal components are likely to combine specific factor variance and error variance into the 

components. Principal components are useful as data reduction but not for understanding the 

structure of the data. 
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